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Abstract End-of-life disassembly has developed into
a major research area within the sustainability para-
digm, resulting in the emergence of several algorithms
and structures proposing heuristics techniques such as
Genetic Algorithm (GA), Ant Colony Optimization
(ACO) and Neural Networks (NN). The performance of
the proposed methodologies heavily depends on the ac-
curacy and the flexibility of the algorithms to accommo-
date several factors such as preserving the precedence
relationships during disassembly while obtaining near-
optimal and optimal solutions. This paper improves a
previously proposed Genetic Algorithm model for
disassembly sequencing by utilizing a faster meta-
heuristic algorithm, Tabu search, to obtain the optimal
solution. The objectives of the proposed algorithm are
to minimize (1) the traveled distance by the robotic
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arm, (2) the number of disassembly method changes,
and (3) the number of robotic arm travels by com-
bining the identical-material components together and
hence eliminating unnecessary disassembly opera-
tions. In addition to improving the quality of optimum
sequence generation, a comprehensive statistical anal-
ysis comparing the previous Genetic Algorithm and
the proposed Tabu Search Algorithm is also included

Keywords Disassembly sequence · Electronics
disassembly · End-of-life management · Heuristics ·
Optimization · Robotics applications · Tabu search

1 Introduction

Products in today’s market can be generally classified
into two categories: efficient and responsive. Efficient
products are considered to have a stable and constant
demand, supply, pricing, and they tend to move slowly
through the supply chain. However, the demand, sup-
ply, and price for responsive products fluctuate often
and these products are characterized by relatively
larger profit margins due to their time sensitive nature.
This sensitivity requires them to move faster in the
forward supply chain to ensure customer satisfaction.
With similar logic, the useful lifetime of responsive
products tends to be much shorter than their efficient
counterparts due to macro environmental changes,
viz., globalization and technological advances. There-
fore, reverse distribution systems become instrumental
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in retrieving these products from the market for sub-
sequent re-use, recycling, or proper disposal. Within
responsive products, electrical and electronic equip-
ment (EEE) is the largest growing waste stream
requiring economically and environmentally solid and
efficient reverse logistics and supply chain operations.
EEE uses large quantities of natural resources includ-
ing substantial amounts of precious metals such as
gold, silver, and copper during their production. Fur-
thermore, EEE is composed of several components
and subassemblies that can be reused even if the whole
product might not be technologically valid. Together
with the precious material content, the functionality
of these partial structures makes recycling and re-use
activities economically valid. Re-use, recycling, or
proper disposal of any product generally requires dis-
assembly of the end-of-life product.

The efficiency of disassembly operations is a cru-
cial factor in the success of any reverse flow. Because
using human labor to disassemble these products adds
more cost and time to the overall system, the need
for utilizing automated solutions becomes apparent.
In addition, the process of disassembly is compli-
cated and carries various risk factors due to the haz-
ardous substances embedded in these products. In
some instances, disassembly is also required to replace
or fix components that are not accessible by humans,
making robotic solutions in these specific situations
the only alternative.

The problem of generating an optimal sequence for
disassembly operations is rather challenging due to the
uncertainty of the process. EEE is subject to various
changes in their original bill-of-materials due to tech-
nological advances. For instance, a component inside
a personal computer may be altered over time due to
an upgrade or a change, such as replacing the RAM
capacity. Another, perhaps more important challenge
that contributes to the complication of disassembly
operations is the fact that the majority of products are
not designed for disassembly; thus requiring destruc-
tive disassembly operations in some instances and
prohibiting the reuse of still functioning components.

This paper aims to target the uncertainty and afore-
mentioned challenges by introducing two modules: A
sensory system and an online Tabu search algorithm.
The sensory system is used to identify the depth of the
product with the help of a digital camera capturing
product images for processing and detecting the com-
ponents. The Tabu search algorithm then generates an
optimum online real time disassembly sequence using
this information, hence overcoming the uncertainty in
the product structure.

Figure 1 demonstrates the bill of materials (BOM)
of the end-of-life product and depicts the product
structure used in this paper. The proposed solution
includes a robotic manipulator with a digital camera
and utilizes range sensing and component segmen-
tation algorithms (Fig. 2). Table 1 lists all of the
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Fig. 1 Bill-Of-Materials (BOM) for the EOL product
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Fig. 2 Screenshot of the robot arm and the processor prior to disassembly

components in the product including their material
content and the required disassembly operation (des-
tructive (D) or non-destructive (ND)).

The Tabu Search (TS) algorithm utilized in this
paper was first proposed by Fred Glover [1] in 1986 to
overcome the Local Optimal Search (LS) problem and
enabling global Optima search. Tabu Search generally
includes two memories, namely, short and long-term
memory. The short-term memory prevents the reversal
of the recent moves. The long-term frequency memory
reinforces attractive components, forcing the algo-
rithm to move towards more preferable solutions. The
algorithm also generates a Tabu list prohibiting returns
to previously searched paths. Tabu Seach is an exten-
sion of classical LS methods. In fact, basic TS can be

Table 1 End-of-life product components, material content and
required disassembly techniques

Component Description Material Disassembly

number method

0 Robot reference point

1 Side cover Aluminum (A) D

2 Power supply Copper(C) D

3 Sound card Plastic (P) ND

4 Modem card Plastic (P) ND

5 CPU Plastic (P) ND

6 Hard drive Aluminum (A) ND

7 CD drive Aluminum (A) ND

8 Zip drive Aluminum (A) ND

9 RAM Plastic (P) ND

10 Drives slot Aluminum (A) D

seen as simply the combination of LS with short-term
memories. The recycle back in the moves is prevented
by using the memories (Tabu Lists). Hence, the two first
basic elements of any TS heuristic are the definitions
of its search space and its neighborhood structure [1].

2 Literature Review and Background

Evolutionary algorithms have been recognized to
be well-suited to multi-objective optimization since
early in their development [2]. Given that the EOL
disassembly embodies several objectives to ensure
its efficiency, multi-objective evolutionary algorithms
have been extensively used for the EOL disassembly
scheduling and/or sequencing problems [3].

Kongar and Gupta [4] considered the case of
complete disassembly utilizing both destructive and
non-destructive methods. Their paper presented an algo-
rithm for establishing partial and non-destructive dis-
assembly sequences of products, where the recycling
and industrial maintenance requires a non-destructive
methodology for automatic disassembly. Furthermore,
the authors introduced a new representation for the
component included in the disassembly based on
assemblies of components, not the material. Their
method helps in finding the optimum disassembly
sequence faster within the process of disassembling
products, based on the information from the design
process. Therefore, the algorithm could be used in
new product design as well as for recycling and prod-
uct maintenance. The code for the Tabu Search first
appeared in Rizk and ElSayed [5].
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McGovern and Gupta [6] focused on the disas-
sembly line balancing problem aiming at increasing
the process productivity while reducing the number
of workstations used. To achieve this, their work uti-
lized a genetic algorithm to obtain the optimal or
near-optimal solution for the disassembly sequencing.

ElSayed et al. [7] used a Genetic Algorithm with
precedence preservative crossover (PPX) to find the
optimum or near-optimum disassembly sequence for
complete disassembly The objective of the proposed
GA is to minimize the total fitness function by mini-
mizing (i) the traveled distance, (ii) the number of dis-
assembly method changes, and (iii) by combining the
identical-material components together, eliminating
unnecessary disassembly operations. Following this, a
roulette wheel is employed to select the sequence of
parents in the next generation. The objectives include,
(1) minimizing the number of workstations and hence,
minimizing the total idle time, (2) ensuring worksta-
tion idle times are similar, (3) removing hazardous
parts early in the disassembly sequence, (4) remov-
ing high-demand parts before low-demand parts, and
(5) minimizing the number of part removal direction
changes required for disassembly. The authors also
introduced a new efficiency measurement tool com-
bining Line Efficiency (LE) and Smoothness Index
(SI).

Torres et al. [8] proposed a cell with a degree of
automation in non-destructive product disassembly.
The authors also employed computer vision for object
detection in addition to a modeling system for the
products. The modeling system provides information
regarding the type of products and the main compo-
nents of the product architecture.

ElSayed et al. [9] proposed an online Genetics
Algorithm (GA) that aims at handling uncertainty in
the EOL product structure. The algorithm consists of
two modules: (i) a sensory-driven visual and range
acquisition recovery system, and (ii) an online genetic
algorithm (GA) model. The object detection converts
objects from 3D to 2D structures via a camera-based
algorithm resulting in 21/2 D images. The proposed
algorithm finds the optimal disassembly sequence
while reducing the time required to disassemble the
product.

Xing et al. [10] conducted a survey that reviews the
application of soft computing to remanufacturing. The
survey aimed at finding answers to various remanufac-
turing software questions such as the main problems
within remanufacturing systems and existing reman-
ufacturing techniques. The survey utilized the data
provided by the library of the University of Johannes-
burg, South Africa. The results were categorized into
two basic groups; disassembly and remanufacturing.

Block 3

Block 1

Block 2

Fig. 3 Tabu Search flowchart
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Table 2 Tabu Search algorithm

Step 1 Start with random initial solution

Step 2 Calculate the fitness value for the random generated solution

Step 3 Tabu search will find the next good solution

Step 4 Calculate the fitness for the next solution

Step 5 If next solution has better fitness, set the new solution as the current solution and go to step 3

Step 6 End of iterations, return best selected solution.

Kalayci and Gupta [11] introduced a Tabu Search
(TS) algorithm to solve the Disassembly Line Bal-
ancing Problem (DLBP) with multiple objectives. The
DLBP described in the paper consists of multiple
objectives requiring the assignment of disassembly
tasks to a set of ordered disassembly workstations
while satisfying the disassembly precedence con-
straints and optimizing the effectiveness of several
measures. The authors aimed at reducing the number
of disassembly steps required to minimize the total
idle time for all workstations. They also assigned the
removal of hazardous and high demand components
maximum priority.

Torres et al. [12] proposed two types of cooperation
among robot arms aiming to manage the task between

multiple robots. In the first cooperation, two or more
robots cooperate to achieve the same task. In the sec-
ond type, several tasks are achieved by different robots
at the same time. The entire design was built based on
a decision tree. The main goal in their follow up work
[13] is to retrieve materials from the EOL product via
destructive disassembly.

Kuren [14], to find an optimum disassembly path
for EOL products, proposed a disassembly cell pro-
totype and presented a case study for mobile phone
disassembly. Since a destructive method was used in
this paper, the need to used precedence relationships
has been eliminated in the proposed solution.

This work is a follow up on the algorithms in
Kongar and Gupta [4]. The proposed genetic

Table 3 Pseudocode for Tabu Search
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Block 3

Block 1

Block 2

Fig. 4 Genetic Algorithm flowchart

algorithm includes PPX (Precedence Preservation
Crossover) to respect the hierarchical structure of the
EOL product. The main objective of the algorithm is to

minimize the Makespan by minimizing the number of
direction changes, disassembly method changes, and
combining the identical-material components.

Block 1

Block 2

Fig. 5 Overall process for running GA and Tabu
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Table 4 Summary statistics for Tabu Search (TS) and Genetic
Algorithm (GA) run times in miliseconds

Tabu Search (TS) Genetic

Algorithm (GA)

Mean 197.65625 402.9844

Standard Error 2.033077929 1.125706

Median 187.5 406.25

Mode 156.25 390.625

Standard Deviation 64.29156917 35.59795

Sample Variance 4133.405867 1267.214

Kurtosis 0.3840795 6.296531

Skewness 0.95576832 1.572811

Range 328.125 328.125

Minimum 78.125 296.875

Maximum 406.25 625

Sum 197656.25 402984.4

Count 1000 1000

Confidence Level (95.0 %) 3.989593024 2.20902

3 Proposed Methodology

The proposed algorithm aims at minimizing the uncer-
tainty in the disassembly process via two techniques:
(1) A sensory system, and (2) an online real-time Tabu
Search module. The sensory system consists of a
robotic manipulator, a digital camera and an image
processing algorithm. The camera captures the images
of components and/or subassemblies accessible at
each level (Fig. 1) and identifies the depth of each
available entity. The Tabu Search (TS) algorithm then
uses this information to determine the optimal dis-
assembly sequence for the current level. Since the
visibility and accessibility of components are altered
following each disassembly operation, the Tabu Search

algorithm seeks another optimal sequence for the
newly generated EOL product structure. The sensory
system captures product images after every removal,
providing the Tabu Search algorithm with accurate
online real-time data. This loop continues until all
the components demanded for recycling and reuse are
removed. Unwanted components are also subject to
disassembly, if and only if their removal would lead to
accessibility of desired components; i.e., the compo-
nents demanded for reuse or recycling. This condition
prohibits unnecessary movements and hence reduces
the overall Makespan.

The Tabu Search algorithm is motivated by mul-
tiple objectives while searching for the best possible
sequence within each layer. The algorithm ensures
that (1) the distance traveled by the robot arm, (2)
the number of disassembly method changes; i.e., from
ND to D or vice versa, and (3) the number of mate-
rial changes are minimized. Objective (3) is achieved
by grouping the components that are made out of
identical materials and increases the overall Makespan
via a panelizing constant if the following component
to be disassembled consists of different material. A
literature example is considered to demonstrate the
functionality of the proposed algorithm.

The optimal disassembly path search has been
conducted via Tabu Search. The following lists the
equations applied in the model.

tij =
√(

Xi(i−1) − Xi(i)

)2 + (
Yi(i−1) − Yi(i)

)2 + (
Zi(i−1) − Zi(i)

)2

sf

(1)

Equation 1 demonstrates the fitness function used
to evaluate the generated solution. This function is
used every time a new solution is generated calculat-
ing the corresponding fitness value. Here, X, Y and Z

Fig. 6 Scatter plots of Tabu
Search (TS) and Genetic
Algorithm (GA) run times
in miliseconds
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Fig. 7 Histograms of Tabu
Search (TS) and Genetic
Algorithm (GA) run times
in milliseconds

represent the location of the detected item in 3D where
X is the x-axis (width), Y is the y-axis (height) and Z
is the z-axis (depth). The square root of the distance
between object i and i-1 is divided by the robot speed
sf (sf = 7 in the provided example).

mij =
{

0 if method change is not required ND to ND

1 if method change is requried ND to D
(2)

The second factor that affects the speed of disassem-
bly is the change of disassembly method, viz., from
D to ND or ND to D. This condition is represented
by Eq. 2. The overall objective of the Tabu search is
to minimize the fitness function. The cumulative dis-
assembly time after the disassembly is finalized for
the sequence j is represented by Tj and is provided in
Eq. 3.

Tj = Tj−1 + dij + tij + mij (3)

Figure 3 represents the Tabu Search algorithm steps.
In Block 1, the parameter initialization is executed to
set Tabu parameters, such as short-term memory, to

Table 5 Kolmogorov-Smirnov and Shapiro-Wilk tests of
normality

Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Tabu .165 1000 .000 .921 1000 .000

Genetic .174 1000 .000 .879 1000 .000

generate the initial solution and to calculate the fit-
ness value of the initial solution. Block 2 is the general
loop that runs every iteration during the search. Block
3 explains the internal runs. During the iteration three
solutions will be generated and evaluated to find the
next best solution. In the case where the current solu-
tion is not considered a good one, the same iteration
will be executed until a good solution is found. This
will prevent the algorithm from falling in local optima
and will also serve as the short term memory for the
algorithm.

The steps of the Tabu Search algorithm are pro-
vided in Table 2 and the pseudo code for the overall
search is given in Table 3.

After initializing the algorithm parameters, the
ComputeCost function will be executed to calculate
the fitness for the first and initial solution, then RunTS
will iterate to find the optimal or near optimal solu-
tion. In the case where the next best feasible solution

Table 6 F-Test two-sample for variances results

Tabu Search (TS) Genetic Algorithm (GA)

Mean 197.65625 402.984375

Variance 4133.405867 1267.214236

Observations 1000 1000

Df 999 999

F 3.261805108

P(F <= f one-tail) 4.09549E-74

F Critical one-tail 1.109746136
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Table 7 ANOVA: Single
factor results ANOVA: Single factor

Source of Variation SS Df MS F P-value F crit

Between Groups 21079819 1 21079819 7806.444 0 3.846117028

Within Groups 5395219 1998 2700.31

Total 26475039 1999

is found, the new solution will be assigned as the
current solution (Best Solution), and the program will
continue iterating to obtain a new and better solution.
If a better solution does exist, the short term memory
provided by the Tabu search algorithm will prevent
falling back into local optimal solution.

Figure 4 demonstrates the Genetic Algorithm
Flowchart. Block 1 is used to initialize GA parameters
such as population, generation size and the number of
iterations. Block 2 represents the call of GA functions
such as Crossover, Permutation, and Chromosome.
Block 3 represents fetching the final result when the
run is completed successfully. This result contains the
optimal or near optimal solution generated by GA run.

Figure 5 depicts the overall process for the appli-
cation. Block 1 represents the initialization of all
parameters such as object distances, sub-distances, the
number of items and the number of detected objects.
Block 2 represents the call of Object detection func-
tions, Tabu or GA algorithm to generate the optimal
and near optimal solution in addition to the genera-
tion of sequence, action and disassembly tool. When
this block is executed successfully, the optimal or
near optimal solution will be ready, including the
disassembly method and the tool needed to disassem-
ble the product.

4 Numerical Example

The Tabu Search algorithm is applied to the numerical
example provided in Table 1 for the product provided
in Fig. 1. 1,000 independent runs are completed to test
the Tabu Search and to compare the solutions with the
previously published Genetic Algorithm results pro-
vided in Kongar and Gupta [4]. The following details
the comparison of both algorithms.

In order to validate the reliability of results various
statistical analyses have been conducted in SPSS,
Excel, Matlab and the Arena Simulation software. The
SPSS output of the summary statistics for 1,000 ran-
dom runs for Genetic Algorithm (GA) and Tabu Search
(TS) are provided in Table 4. The median and mode for
Tabu Search runs in milliseconds (187.5, 197.65625)
are significantly less than the median and mode of the
Genetic Algorithm runs (406.25, 402.9844).

Figure 6 depicts the scatter plots of Tabu Search
(TS) and Genetic Algorithm (GA) Run Times in
Milliseconds. Despite the fact that Genetic Algorithm
(GA) runs depict a slower runtime than the Tabu
Search, a hypothesis testing has been conducted to
prove this suspicion.

The histograms of both runs are provided in
Fig. 7. The histograms indicate that Tabu Search

Fig. 8 Scatter plot for Tabu
Search (TS) versus Genetic
Algorithm
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(s2 = 4133.405867) runs are more spread compared
to Genetic Algorithm (s2 = 1267.214) runs.

Further distribution testing in the Arena simulation
software indicated that both data sets are most likely
to belong to a Gamma distribution with the parameters
78 + GAMM(35.4, 3.38) for Tabu Search and 78 +
GAMM(35.4, 3.38) for the Genetic Algorithm; with
test statistics being 0.085 for Kolmogorov Smirnov
test and Chi Square test statistics being 559 for both
data sets.

Since for a dataset smaller than 2,000 elements
the Shapiro-Wilk test is considered more reliable
and both Kolmogorov-Smirnoff and Shapiro-Wilk
normality tests are conducted; the SPSS results of
Kolmogorov-Smirnoff (.165 > .000 for Tabu Search
and .174 > .000 for Genetic Algorithm) and Shapiro-
Wilk tests (.921 > .000 for Tabu Search and .879 >

.000 for Genetic Algorithm) for normality show that
both datasets are not from a standard normal distribu-
tion (Table 5). The alternative hypothesis is rejected
concluding that neither Tabu Search nor the Genetic
Algorithm data set comes from a normal distribution.

F-Test Two-Sample for Variances indicates that the
variances are not equal to each other (Table 6).

Due to the fact that the data sets are not normally
distributed, ANOVA single factor test was also run.
The results are provided in Table 7, indicating that
the variation between the data sets are significantly
different.

A scatter plot for Tabu Search (TS) versus Genetic
Algorithm (GA) runs is plotted to illustrate the rela-
tionship between the two data sets (Fig. 8).

In order to prove the samples are independent of
each other, Pearsons Correlation test has been con-
ducted in SPSS. The test results indicate that the
strength of association between the variables is very
low (r = 0.011), and that the correlation coefficient
is significantly close to zero (P = 0.719 > 0.001).
In additon, we can say that 0.0121 % (0.0112) of the
variation in GA run times is explained by TS run
times.

5 Conclusions and Future Work

In summation, it can be concluded that the data
sets are statistically different from one another with
unequal variances and significantly low correlation.
Tabu Search runs are statistically lower than Genetic

Algorithm runs, hence providing faster solutions to the
disassembly sequencing problem.

Future work will include utilization of Active
Shape Models (ASMs). ASMs are defined as a sta-
tistical model of the object shape which is iteratively
deformed to fit an example. ASMs could be gener-
alized for any object by training and identifying the
main object curves and points that identify the object.
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